

EB89Y-01D

100Gb/s QSFP28 SR BIDI 100M DDM Transceiver

PRODUCT FEATURES

- > QSFP28 MSA compliant
- > Support 100GE aggregate bit rates
- Support KP4 FEC @ 100G data rate
- > Two independent full-duplex channels
- > Up to 100m OM4 MMF transmission
- > Operating case temperature: 0 to 70 C @ 100G
- > Single 3.3V power supply
- > Maximum power consumption 4W
- LC optical connector
- RoHS-6 compliant

APPLICATIONS

- > Data Center
- Infiniband HDR
- > 100G Ethernet

DESCRIPTIONS

This product can support 100Gb/s bit rates. It is a parallel Quad Small Form-factor Pluggable (QSFP28) Bi-Direction optical module. The module integrates four host electrical data into two optical lanes (by Dual Wavelength VCSEL Bi-Directional Optical Interface, 850nm and 900nm) to allow optical communication over a 2-fiber duplex LC optical multi-mode fiber. Reversely, on the receiver side, the module de-multiplexes 2 sets of optical input signal and converts them to 4 channels of electrical data.

An optical fiber ribbon cable with an LC connector can be plugged into the QSFP28 module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through an MSA-compliant 38-pin edge type connector.

The module operates by a single +3.3V power supply. LVCMOS/LVTTL global control signals, such as Module Present, Reset, Interrupt and Low Power Mode, are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals, and to receive digital diagnostic information. Individual channels can be addressed and unused channels can be shut down for maximum design flexibility. The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.

Module Block Diagram

Ordering Information

Part No.	Data Rate(optical)	Laser	Fiber Type	Distance	Optical Interface	Temp	DDMI
EB89Y-01D	106. 25Gbps	VCSEL	MMF	100m	LC	0~70℃	Yes

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Storage Temperature	Ts	-40	-	+85	°C	
Supply Voltage	Vcc	-0.5	-	+4.0	V	
Operating Relative Humidity	RH	-	-	+85	%	
Damage Threshold	THd	5			dBm	

Recommended Operating Conditions

Param	eter	Symbol	Min.	Typical	Max.	Unit	Notes
Operating Case Temperature		Tc	0	-	+70	°C	
Power Supply Vol	ltage	Vcc	3.13	3.3	3.47	V	
Power Consum	ption				4	W	
Supply Current		lcc			1.21	Α	
Transmission Dist	tanco	ТП			100	R	Over
			_	-	100		MMF
Data Rate Accuracy			-		100	ppm	
			100				
Pre-FEC Bit Err	or Ratio				2.4x10-4		
Post-FEC Bit E	rror Ratio				1x10-12		1
	OM3	D1			70	m	2
Link	OM4	D2			100	m	2
Distance	OM5	D3			150	m	2

Notes:

1. FEC provided by host system.

2. FEC required on host system to support maximum distance.

Electrical Characteristics

Parameter	Test Point	Min	Typical	Max	Unit s	Notes			
	Transmitter (each Lane)								
Overload Differential Voltage pk-pk	TP1a	900			mV				
Common Mode Voltage (Vcm)	TP1	-350		2850	mV	1			
Differential Termination Resistance Mismatch	TP1			10	%	2			

Differential Return Loss (SDD11)	TP1			See CEI- 28G-VSR Equation	dB	
				13-19		
Common Mode to Differential conversion and Differential to Common Mode conversion (SDC11,	TP1			See CEI- 28G-VSR Equation 13-20	dB	
SCD11)		See CEI-				
Stressed Input Test	TP1a	28G-VSR Section 13.3.11.2.1	. <			
	Rece	eiver (each	Lane)		1	
RX Differential Voltage, pk-pk	TP4			900	mV	
Common Mode Voltage (Vcm)	TP4	-350		2850	mV	1
Common Mode Noise, RMS	TP4			17.5	mV	
Differential Termination Resistance Mismatch	TP4			10	%	2
Differential Return Loss (SDD22)	TP4			See CEI- 28G-VSR Equation 13-19	dB	
Common Mode to Differential conversion and Differential to Common Mode conversion (SDC22, SCD22)	TP4			See CEI- 28G-VSR Equation 13-21	dB	
Common Mode Return Loss (SCC22)	TP4			-2	dB	2
RX output Transition Time, 20 to 80%	TP4	9.5			ps	
Vertical Eye Closure (VEC)	TP4			5.5	dB	
Eye Width at 10-15 probability (EW15)	TP4	0.57			UI	

Eye Height at 10-15 probability	TP4	228		mV	
(EH15)		220		111 V	

Notes:

- 1. Vcm is generated by the host. Specification includes effects of ground offset voltage.
- 2. At 1MHz
- 3. From 250MHz to 30GHz.

Optical and Characteristics

_			KP4 FEC	Mode		
Parameter	Symbol	Min	Typical	Мах	Unit	Notes
		Transm	nitter			
Center Wavelength Line0	λ C	844		863	nm	
Center Wavelength Line1	λ C	900		918	nm	
RMS Spectral Width	Δλ rms			λ 1: 0.6 λ 2: 0.65	nm	
Average Launch Power, each Lane	PAVG	-6.2		4	dBm	
Optical Modulation Amplitude (OMA), each Lane	POM A	-4.2		3	dBm	1
Peak Power, each Iane					dBm	
Launch power in OMA minus TDP, each lane		-5.6			dBm	
TDECQ, each lane				4.5	dB	
Extinction Ratio	ER	3.0			dB	
Transmitter transition time, each lane (max)				31	ps	
RIN12 OMA				-128	dB/Hz	
Optical Return Loss Tolerance	TOL			12	dB	
Average Launch	Poff			-30	dBm	

Power OFF Transmitter, each Lane						
Encircled Flux			≥ 86% at 19 ≦ 30% at 4.5	µ m µ m		2
Signaling rate, each lane		26	.5625± 100p	pm	Gbps	
		Recei	ver			
Center Wavelength Lane0	λ C	844	850	863	nm	
Center Wavelength Lane1	λ C	900	910	918	nm	
Damage Threshold, each Lane	THd	5			dBm	3
Average Receive Power, each lane		-8.2			dBm	4
Average power at receiver input, each lane (overload)				4	dBm	
Receiver Reflectance	RR			-12	dB	
Stressed receiver sensitivity in OMA				-3.5	dBm	5
Receiver sensitivity(OMA outer), each lane				Max (- 6.6, SECQ - 8) as per IEEE cl 150	dBm	
LOS Assert	LOSA	-30		-14.2	dBm	
LOS Deassert	LOSD			-11.2	dBm	
LOS Hysteresis	LOSH	0.5			dB	

Note:

- 1. Even if the mTDEC<0.9 dB, the OMA (min) must exceed this value.
- 2. If measured into type A1a.2 50um fiber in accordance with IEC 61280-1-4.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate

correctly at this input power.

- 4. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 5. Measured with conformance test signal at TP3 as per following:

Stressed eye closure (SECq), each lane	4.5	dB
OMA of each aggressor, each lane	3	dBm

Digital Diagnostics

Parameter	Symbol	Min	Мах	Units
Temperature monitor absolute error	DMI_Temp	-3	3	degC
Supply voltage monitor absolute error	DMI_VCC	-0.15	0.15	V
Channel RX power monitor absolute error	DMI_RX_Ch	-3	3	dB
Channel Bias current monitor	DMI_lbias_Ch	-10%	10%	mA
Channel TX power monitor absolute error	DMI_TX_Ch	-3	3	dB

Pin Diagram

Top Side Viewed From Top Bottom Side Viewed From Bottom

Pin Definitions

PIN	Logic	Symbol	Description	Plug Seq.	Notes
1		GND	Ground	1	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	3	
4		GND	Ground	1	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	3	
7		GND	Ground	1	1
8	LVTLL-I	ModSelL	Module Select	3	
9	LVTLL-I	ResetL	Module Reset	3	
10		VccRx	+ 3.3V Power Supply Receiver	2	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	3	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	3	
13		GND	Ground	1	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3	
15	CML-O	Rx3n	Receiver Inverted Data Output	3	
16		GND	Ground	1	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	
18	CML-O	Rx1n	Receiver Inverted Data Output	3	
19		GND	Ground	1	1
20		GND	Ground	1	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3	
23		GND	Ground	1	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3	1
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	
26		GND	Ground	1	1
27	LVTTL-O	ModPrsL	Module Present	3	
28	LVTTL-O	IntL/Rx_LOS	Interrupt/Rx_LOS	3	3
29		VccTx	+3.3 V Power Supply transmitter	2	2
30		Vcc1	+3.3 V Power Supply	2	2
31	LVTTL-I	LPMode/TxDIS	Low Power Mode/Tx_Disable	3	3
32		GND	Ground	1	1

Optical Communications Products Alliance

Recommended Interface Circuit

33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3	
34	CML-I	Tx3n	Transmitter Inverted Data Output	3	
35		GND	Ground	1	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3	
37	CML-I	Tx1n	Transmitter Inverted Data Output	3	
38		GND	Ground	1	1

Notes:

1. GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

2. Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Requirements defined for the host side of the Host Edge Card Connector are listed in MSA. The connector pins are each rated for a maximum current of 1000 mA.

3. Two Multi-Purpose Pin for supporting Tx_DIS and Rx_LOS function in the 100G QSFP28 LR1 BIDI module.

Mechanical Diagram

Optical Communications Products Alliance

Revision History

Version No.	Date	Description
1.0	February 4, 2021	Preliminary datasheet
1.1	Aug 20,2024	Format change

Company: ETU-Link Technology Co., LTD

Production base: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street,

Longhua District, Shenzhen city, GuangDongProvince, China 518109

R&D base: Floor 4, Building 4, Nanshan Yungu Phase LI, Taoyuan Community, XiliStreet,Nanshan District, Shenzhen

Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.