

EDQPY-x

100G QSFP28 Copper Cable Assembly

PRODUCT FEATURES

- > Compliant with SFF-8636
- Support IEEE802.3Bj(Ethernet)
- > I2C based two-wire serial interface for easy control and monitoring
- > Hot Pluggable
- Low Crosstalk
- Low power consumption

APPLICATIONS

- > 10G/40G /100G Gigabit Ethernet
- > Infiniband SDR, DDR, QDR, FDR, EDR
- Servers ,Routers and Switches
- Data Center

Benefits

- > Cost-effective copper solution
- > Lowest total system power solution
- > Lowest total system EMI solution
- > Optimized design for Signal Integrity

DESCRIPTIONS

100G QSFP28 passive cable assembly products, based on 4 x25G or 4 x28G structure, the product can well satisfy the next generation 100G switches, servers, routers and other products of application


Requirements.QSFP28 cable adopts optimized design to reduce crosstalk and insertion loss, excellent signal integrity, fully conforms to the next generation 100G Ethernet and Infiniband EDR standards.

Ordering Information

Part No.	Description			
EDQPY-x	100G QSFP28 Copper Cable Assembly (DAC) 0~3M			
EDQPY-x-26	EDQPY-x-26 100G QSFP28 Copper Cable Assembly (DAC) 5M			

Notes:

- 1. where "x" denotes cable length in meters. Examples are as follows:
- 2. x = 1 for 1m,
- 3. 0~3M is the fiber diameter 30AWG
- 4. 5M is the fiber diameter 26AWG

Top Side Viewed From Top

Bottom Side Viewed From Bottom

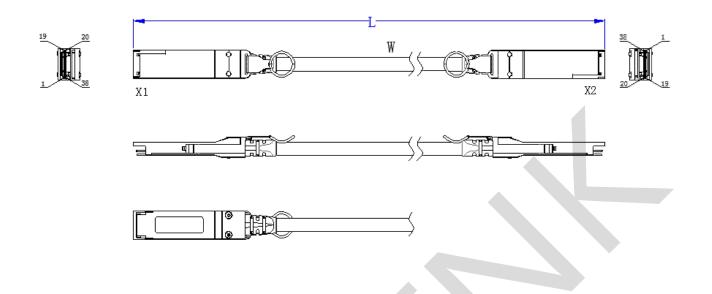
Pin Definitions

PIN	Logic	Symbol	Description	Plug Seq.	Notes
1		GND	Ground	1	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	3	
4		GND	Ground	1	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	3	
7		GND	Ground	1	1
8	LVTLL-I	ModSelL	Module Select	3	
9	LVTLL-I	ResetL	Module Reset	3	
10		VccRx	+ 3.3V Power Supply Receiver	2	2
11	LVCMOS- I/O	SCL	2-Wire Serial Interface Clock	3	
12	LVCMOS- I/O	SDA	2-Wire Serial Interface Data	3	
13		GND	Ground	1	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3	
15	CML-O	Rx3n	Receiver Inverted Data Output	3	
16		GND	Ground	1	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	
18	CML-O	Rx1n	Receiver Inverted Data Output	3	
19		GND	Ground	1	1
20		GND	Ground	1	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3	
23		GND	Ground	1	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3	1
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	
26		GND	Ground	1	1
27	LVTTL-O	ModPrsL	Module Present	3	
28	LVTTL-O	IntL/Rx_LOS	Interrupt/Rx_LOS	3	
29		VccTx	+3.3 V Power Supply transmitter		2
30		Vcc1	+3.3 V Power Supply	2	2
31	LVTTL-I	LPMode/TxDIS	Low Power Mode/Tx_Disable	3	

Optical Communications Products Alliance

32		GND	Ground	1	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3	
34	CML-I	Tx3n	Transmitter Inverted Data Output	3	
35		GND	Ground	1	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3	
37	CML-I	Tx1n	Transmitter Inverted Data Output	3	
38		GND	Ground	1	1

Notes:


- 1. GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Requirements defined for the host side of the Host Edge Card Connector are listed in MSA. The connector pins are each rated for a maximum current of 1000 Ma

Wiring Diagram

X1	X2	REMARKS	X1	X2	REMARKS
18(RX1-)	37(TX1-)	pair	37(TX1-)	18(RX1-)	pair
17(RX1+)	36(TX1+)	puii	36(TX1+)	17(RX1+)	pull
15(RX3-)	34(TX3-)		34(TX3-)	15(RX3-)	pair
14(RX3+)	33(TX3+)	pair	33(TX3+)	14(RX3+)	pair
6 (TX4+)	25(RX4+)	pair	25(RX4+)	6 (TX4+)	pair
5 (TX4-)	24(RX4-)	pull	24(RX4-)	5 (TX4-)	pull
3 (TX2+)	22(RX2+)	pair	22(RX2+)	3 (TX2+)	natu
2 (TX2-)	21 (RX2-)		21(RX2-)	2 (TX2-)	pair
1, 4, 7, 13, 16, 19, 20, 23, 26, 32, 35, 38	1, 4, 7, 13, 16, 19, 20 23, 26, 32, 35, 38	GND	8, 9, 10, 11, 12, 27, 28, 29, 30, 31	8, 9, 10, 11, 12, 27, 28, 29, 30, 31	EEPROM point at both ends

Outline drawing

Revision History

Version No.	Date	Description		
1.0	February 8, 2021	Preliminary datasheet		
2.0	Aug,11,2024	Product upgrades		

Company: ETU-Link Technology Co., LTD

Production base: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street,

Longhua District, Shenzhen city, GuangDongProvince, China 518109

R&D base: Floor 4, Building 4, Nanshan Yungu Phase Ll, Taoyuan Community, XiliStreet,Nanshan District, Shenzhen

Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.